RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2017

CHEMISTRY [Honours]

THIRD YEAR [BATCH 2015-18]

Date : 18/12/2017 Time : 11 am - 1 pm

Paper : V [Gr-A]

Full Marks : 50

[10 marks]

[Attempt <u>one question</u> from <u>each Unit</u>]

<u>Unit – I</u>

1. a) Show that for a square lattice the separation of successive (hko) planes is $\frac{a}{\sqrt{h^2 + K^2}}$, where a is

the side length.

- b) Draw the typical (III) type of planes in BCC and FCC. Also comment on the possibility of finding these planes in the above crystals.
- c) A liquid of molecular weight 18 and density 0.99×10³ Kg m⁻³ has a dielectric constant 78.5 and refractive index 1.383. Calculate the values of its molar polarisation, molar refraction and dipolemoment neglecting atomic polarisation. [3]
- 2. a) Find out the SI unit of polarisability.
 - b) The density of lithium metal is 0.53 g cm^{-3} and the separation of the 100 planes of the metal is 350 pm. Determine whether the lattice is fcc or bcc. [Atomic weight of Li = 6.941] [3]
 - c) From Debye plot, explain the T dependence of P_m and hence find out the dipolemoment of substance from the plot.

d) Explain <u>any one</u> :

- i) For a SCC, intensity vs. $\sin^2 \theta$ plot has a gap after six consecutive peaks.
- ii) The BCC and SCC have different amount of void space.

<u>Unit – II</u>

- 3. a) Define, with an example, a lyophilic colloid. How many such a colloid help in stabilising a lyophobic colloid like a gold sol? Explain what do you mean by the term 'Gold number'? [3]
 - b) The adsorption of a dye [MW 150 g/mol] from its solution by charcoal is governed by Freundlich isotherm with n = 2.0 and k = 4.5. If 1 gram of charcoal powder were shaken with 100ml of 0.2 (M) solution of the dye, what will be the equilibrium concentration of the dye in the solution?
 - c) Write down the BET adsoption isotherm mentioning the terms involved. Plot volume of the gas adsorbed vs equilibrium pressure when heat of condensation is greater than heat of adsorption. [2]
 - d) Deduce Langmuir adsorption isotherm from BET isotherm mentioning the special conditions. [2]
- 4. a) Define spreading coefficient and then find out the condition of spreading of a liquid over another one.
 - b) At 25°C the vapour pressure of water is 23.74mm. What is the size of water droplet that can remain stable at a vapour pressure of 24 mm at 25°C.
 - c) A sphere of water of radius 1 mm is divided into two drops of radius r and 2r. Find out the change in surface energy. [$\gamma_{water} = 72 \text{ dyne}/\text{cm}$]
 - d) What is zeta potential? Why is a finite magnitude of zeta potential necessary for colloid stability?
 [2]

[10 marks]

[3]

[4]

[2]

[3]

[3]

[2]

[3]

[3]

[1×2]

Unit – III

[4]

[3]

[4]

[3]

[3]

[3]

[2]

- a) Verify that the wave function $A \exp\left(-\frac{Bx^2}{2}\right)$ is an eigen function of the simple harmonic 5. oscillator (in one dimension) Hamiltonian. Here $B = 2\pi \sqrt{\frac{mK}{h}}$ (the terms have their usual significance). Find the expression of eigen value (E_0) . From the value of E_0 , make an estimate of the positions of the classical turning points using proper arguments. [3+2]
 - b) Prove that the most probable distance of the electron from the nucleus in the groundstate of

hydrogen atom is equal to Bohr's first radius. $\left| R_{1S}(r) = \frac{2}{a_{0}^{2}} e^{-\frac{r}{a_{0}}} \right|$ [3] [2]

c) Instead of p_{+1} and p_{-1} orbitals, p_x and p_y orbitals are used —explain.

Schrödinger equation for Hydrogen atom is given as 6. a)

$$-\hbar^{2}\left[\frac{\partial}{\partial r}r^{2}\frac{\partial\psi}{\partial r} + \frac{1}{\sin\theta}\left(\frac{\partial}{\partial\theta}\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}\psi}{\partial\phi^{2}}\right] = 2m_{e}r^{2}\left[\frac{e^{2}}{4\pi\varepsilon_{0}r} + E\right]\psi(r,\theta,\phi)$$

Carry out the 'separation of variable' method to obtain the three independent equation, each containing only one variable r, θ or ϕ .

- b) For the 1S wavefunction for H-atom, $\psi_{1S} = (\pi a_0^3)^{-1/2} e^{-r/a_0}$, a_0 is the Bohr radius find out the average distance of the electron from the nucleus.
- What do you mean by zero point energy? Justify the existence of a non-zero zeropoint energy c) in case of a quantum harmonic oscillator in the light of Heisenberg Uncertainty principle. [3]

- Calculate no. of component, no. of phases and the no. of degrees of freedom for water at its 7. a) i) boiling point.
 - ii) How do those quantities change when some NaCl is added to the water and then it is allowed to boil.
 - b) At 27°C, 10g of phenol-water mixture is produced containing 30% phenol by weight. The mixture contains two conjugate solutions one having 20% phenol by weight and the other having 80% phenol by weight. Find out the weight of the two conjugate solutions.
 - Starting with the appropriate form of the Gibbs'-Duhem equation show that in case of a c) mixture of two liquids the vapor phase is richer in the component, addition of which raises the total vapor pressure.
- 8. Draw qualitative graph showing how vapor pressure of A, vapor pressure of B and total vapor a) pressure change with mole fraction of A for the three cases
 - i) A – B obeys Raoult's law
 - ii) Shows positive deviation to it
 - iii) Shows negative deviation to it.
 - b) Four phases of a substance do not coincide in a single point —justify.
 - With the help of the phase rule show that at a given pressure, the critical solution temperature is c) [2] non-variant.
 - The vapour pressure of H₂O at 25°C is 24 mm. N₂ gas is introduced into the container d) containing water such that total pressure becomes 10 atm. Calculate the vapour pressure of water. [Density of water = 1 g/cc]. [3]

(2)

9. a) What is residual entropy? Find out its value for CO.

b) If the molecular partition function q of a monoatomic gas is given by $q = e^{(A+B\ln T)}$, where A and B are constants, then find out the expression of molar heat capacity (\overline{C}_v) of the gas and show

that
$$B = \frac{3}{2}$$
. [Given, $U = NK_B T^2 \left(\frac{\partial \ln q}{\partial T}\right)_V$] [3]

- c) Discuss the principle of adiabatic demagnetisation with S T diagram.
- d) State Nernst heat theorem.

10. a) If the energy difference between the first excited state and ground state is $3 \in_0$, (\in_0 = energy of the ground state), find out the population ratio between first excited state ($g_1 = 3$) and non degenerate ground state at 300K.

- b) A 2-level system is characterized by an energy gap of $1 \cdot 3 \times 10^{-18}$ J. At what temperature will the population of ground state be 5 times greater than that of excited state? [2]
- c) Entropy is a logarithmic function of thermodynamic probability Justify. [3]
- d) C_V vs. $\frac{T}{\theta}$ plot for diamond maintains large difference w.r.t the experimental curve. [2]

_____ × _____

[10 marks]

[1+1]

[3]

[2]

[3]